Chem. Ber. 119, 3766-3781 (1986)

Radikalionen, 71¹⁾

Oxidative Schwefelung von Acetylenen zu 1,2-Dithiet- und 1,4-Dithiin-Radikalkationen²⁾

Hans Bock*, Peter Rittmeyer³⁾ und Udo Stein⁴⁾

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt/M. 50

Eingegangen am 5. Juli 1985

In Reaktionsgemischen von Acetylenen $RC \equiv CR$ (1) mit R = H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , $C(CH_3)_3$, C_6H_5 mit ClSSCl/AlCl₃/H₂CCl₂ oder mit $S_8/SbCl_5/H_2CCl_2$ lassen sich bei 250 K zunächst 1,2-Dithiet-Radikalkationen $R_2C_2S_2^{\oplus}$ (2a – g) und nach Erwärmen auf 300 K zusätzlich 1,4-Dithiin-Radikalkationen $R_4C_4S_2^{\oplus}$ (3) ESR-spektroskopisch nachweisen. Ihre Erzeugung gelingt auch durch Umsetzung von 1,2-Dichlorethen- oder 1,1,2,2-Tetrabromethan-Derivaten mit Na₂S₂/AlCl₃/H₂CCl₂, die sich zur ³³S-Isotopenmarkierung eignet. Nach geometrie-optimierten closed und open shell MNDO-Berechnungen ist sowohl für H₂C₂S₂ wie für H₂C₂S₂^{\oplus} die Vierring-Struktur bevorzugt; hohe Spindichte in der Disulfid-Gruppierung erklärt die beobachteten großen *g*-Faktoren und ³³S-Koppungskonstanten.

Radical Ions, 71¹⁾

Oxidative Sulfurization of Acetylenes to 1,2-Dithiete and 1,4-Dithiine Radical Cations²⁾

In reaction mixtures of acetylenes $RC \equiv CR$ (1) with R = H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , $C(CH_3)_3$, C_6H_5 and $ClSSCl/AlCl_3/H_2CCl_2$ or $S_8/SbCl_5/H_2CCl_2$ at 250 K first 1,2-dithiete radical cations $R_2C_2S_2^{\oplus}$ (2a-g) and after warming to 300 K in addition 1,4-dithiine radical cations $R_4C_4S_2^{\oplus}$ (3) are characterized ESR spectroscopically. Their generation can also be accomplished by the reaction of 1,2-dichloroethene or 1,1,2,2-tetrabromoethane derivatives with $Na_2S_2/AlCl_3/H_2CCl_2$, a method well suited for ³³S isotope marking. According to geometry-optimized closed and open shell MNDO calculations, the preferred structures both for $H_2C_2S_2$ and for $H_2C_2S_2^{\oplus}$ are four-membered rings; high spin density in the disulfide moiety allows to rationalize the observed large g values and ³³S coupling constants.

Bei der in technischem Maßstab durchgeführten Friedel/Crafts-Dichlorierung von Benzol kann der Anteil an erwünschtem 1,4-Dichlorbenzol durch Zugabe von elementarem Schwefel oder geeigneten Schwefel-Verbindungen von 47 auf 75% gesteigert werden²⁾. In Modelluntersuchungen zu dieser Redox-Katalyse gelang es, in H₂CCl₂-Lösungen⁵⁾ von Benzol-Derivat, Schwefel-Komponente und Lewis-Säure ESR-spektroskopisch Benzo-1,2-dithiet- sowie Thianthren-Radikalkationen nachzuweisen²⁻⁴⁾ [Gl. (1)].

Zahlreiche Dithiet-Derivate lassen sich in Substanz isolieren und mit geeigneten Einelektronentransfer-Systemen zu ihren Radikalkationen oxidieren, so das bereits 1960 aus Hexafluor-2-butin und siedendem Schwefel gewonnene⁶⁾ und strukturell charakterisierte⁷⁾ 3,4-Bis(trifluormethyl)dithiet mit H_2SO_4 in Nitromethan⁸⁾ [Gl. (2)].

Auch die in mehrstufiger Synthese zugänglichen Dithiet-Derivate mit raumerfüllenden Alkylgruppen in 3,4-Stellung^{9,10)} reagieren mit AlCl₃ in H₂CCl₂^{5,11)} unter Einelektronen-Transfer gemäß (3). Als Folgeprodukte entstehen 1,4-Dithiin-Radikalkationen¹¹⁾. Ähnliche Gerüstumlagerungen werden bei der Oxidation aromatischer Disulfide mit AlCl₃/H₂CCl₂ beobachtet^{12,13)} (4).

Ausgehend von den in den Gleichungen (1) bis (4) zusammengefaßten Befunden haben wir als weitere π -Komponente Acetylene 1 unter gleichen Bedingungen umgesetzt (5).

Im folgenden wird über diese und andere Umsetzungen berichtet, mit denen sich 1,2-Dithiet- sowie als Folgeprodukte 1,4-Dithiin-Radikalkationen erzeugen und ESR-spektroskopisch in Konzentrationen von etwa 10^{-5} mol kennzeichnen lassen. Hiermit soll vor allem zur Kenntnis der Umlagerungen von Organoschwefel-Verbindungen unter oxidierenden Bedingungen und in Gegenwart der Lewissäure AlCl₃ beigetragen werden.

A. Erzeugung und ESR-Nachweis des unsubstituierten 1,2-Dithiet-Radikalkations H₂C₂S₂[⊕] (2a)

Das unsubstituierte 1,2-Dithiet-Radikalkation (2a) ist bereits mehrfach ESRspektroskopisch identifiziert worden: so nach Oxidation eines Bis(dithioglyoxyl)nickel-Komplexes mit $H_2SO_4/H_3CNO_2^{14}$ oder nach Umsetzung von Glycolaldehyd mit Na₂S in konzentrierter Schwefelsäure⁸. In den ESR-Spektren der resultierenden Lösungen erscheinen bei höherem Feld zusätzlich die Signale des 1,4-Dithiin-Radikalkations (3a) (6), welches auch aus 1,4-Dithiin mit verschiedenartigen Oxidationsmitteln wie $H_2SO_4^{15}$ oder AlCl₃/H₃CNO₂¹⁶ erzeugt werden kann [Schema (6)].

Den literaturbekannten Darstellungen^{9,14)} werden drei neue hinzugefügt [Schema (6)]: So gelingt es, Acetylen mit S₂Cl₂ und AlCl₃ in H₂CCl₂ zum 1,2-Dithiet-Radikalkation (**2a**) umzusetzen³⁾; mit zeitlicher Verzögerung erscheint bei höherem Feld das Quintett des 1,4-Dithiin-Radikalkations (**3a**) (Abb. 1, A)³⁾.

Als weitere neue Wege zum 1,2-Dithiet-Radikalkation (2a) eignen sich die Umsetzungen von *trans*-1,2-Dichlorethen oder von 1,1,2,2-Tetrabromethan mit Na₂S₂ und AlCl₃ in H₂CCl₂⁴ [Schema (6)]. Hierbei entwickelt sich das ESR-Quintett des 1,4-Dithiin-Radikalkations (3a) (Abb. 1, A) wesentlich langsamer, so daß bei 100facher Verstärkung auch auf der Hochfeld-Seite des H₂C₂S₂^{\oplus}-Spektrums die beiden Linien des ³³S-Quartetts noch aufgelöst werden (Abb. 1, A). Ein weiterer Vorteil dieser Radikalkation-Erzeugungsroute liegt in der leicht möglichen Isotopenmarkierung: stöchiometrisches Eintragen von S₈ mit 48.56% ³³S in eine Lösung von Natrium in flüssigem Ammoniak im Mikromaßstab liefert nach NH₃-Abdampfen quantitativ ein gelbes Produkt, das überwiegend aus ³³S-angereichertem Na₂S₂ besteht. Dessen Umsetzung z. B. mit Tetrabromethan und AlCl₃ in H₂CCl₂ führt zu einem ESR-Spektrum (Abb. 1, B), in welchem die ³³S-Satelliten deutlich hervortreten. Die Computer-Simulation dieses Spektrums (Abb. 1, C) gelingt unter der Annahme, daß in der Lösung je 25% unmarkierte und doppelt markierte Radikalkationen neben 50% einfach markierten H₂C₄(^{32,33}S)² vorliegen,

Abb. 1. ESR-Spektren von 1,2-Dithiet-Radikalkation (**2a**), erzeugt durch Umsetzung von Acetylen mit S₂Cl₂ + AlCl₃ in H₂CCl₂ (A), aus *trans*-1,2-Dichlorethen mit Na₂S₂ + AlCl₃ in H₂CCl₂ (identisch mit (A)) oder durch Umsetzung von 1,1,2,2-Tetrabromethan mit Isotopenmarkiertem (48.56%) Na₂^{32,33}S₂ und AlCl₃ in H₂CCl₂ (B). (C) zeigt die Computersimulation des ESR-Spektrums für die Mischung der verschiedenartig markierten Radikalkationen im Verhältnis 25% $^{32}S^{32}S$: 50% $^{33}S^{33}S$: 25% $^{33}S^{33}S$ und (A) das bei höherem Feld erscheinende ¹H-Quintett des 1,4-Dithiin-Radikalkations (**3a**)

und liefert daher einen zusätzlichen Beleg für ein Radikal mit zwei äquivalenten S-Zentren.

Die weitergehende Strukturdiskussion des erzeugten Radikalkations $H_2C_2S_2^{\oplus}$ (2a) erfolgt anhand von MNDO-Berechnungen: Für die Vierring-Struktur sowie die beiden wahrscheinlichsten offenkettigen Isomeren der Neutralverbindung $H_2C_2S_2$ und ihres Radikalkations $H_2C_2S_2^{\oplus}$ werden die in (7) angegebenen Bildungsenthalpien ΔH_f^{MNDO} und Ladungsverteilungen Q^{MNDO} erhalten.

Ein Vergleich der MNDO-Bildungsenthalpien (7) zeigt, daß sowohl für 1,2-Dithiet als auch insbesondere für sein Radikalkation jeweils das Vierring-Isomere energetisch begünstigt ist. Dieses Ergebnis stimmt mit den aufgeklärten Strukturen stabiler Derivate^{7,17,18)} ebenso überein wie mit Resultaten zahlreicher weiterer Berechnungen^{11,19-22)}, welche nur für Verbindungen mit starken Donor-Substituenten bevorzugte Dithioketon-Isomere voraussagen^{19,23)}. Als zusätzlicher Beleg für die Vertrauenswürdigkeit der MNDO-Bildungsenthalpien sei angeführt, daß die Differenz zwischen 1,2-Dithiet und seinem Radikalkation, $\Delta H_f^{MNDO} = 909 \text{ kJ/}$ mol = 9.4 eV, seine literaturbekannte erste Ionisierungsenergie vom 9.05 eV²¹) zufriedenstellend annähert. Gleiches gilt auch für das stabile Bis(trifluormethyl)-Derivat (2), dessen PE-spektroskopisch bestimmte 1. Ionisierungsenergie 10.2 eV^{3,20}) beträgt, siehe (8).

Die vor allem für das 1,2-Dithiet-Radikalkation (2a) energetisch bevorzugte Vierring-Struktur (7) läßt sich anhand der MNDO-Ladungsverteilung näher erläutern: Die entsprechend den effektiven Kernladungen $S \rightarrow C$ -polarisierte Neutralverbindung enthält 6 π -Elektronen, d. h. 2 mehr als das π -System von Cyclobutadien-Derivaten. Bei Oxidation wird Elektronendichte nahezu ausschließlich dem Vierring entnommen; im Radikalkation befinden sich 2/3 der positiven Ladung im Bereich der elektronenreichen Disulfid-Brücke. Diese günstige Ladungsverteilung ist in den offenkettigen Isomeren nicht möglich (7).

Die durch das ¹H-Triplett und die ³³S-Isotopenmarkierung ESR-spektroskopisch für $H_2C_2S_2^{\oplus}$ bewiesene Anordnung mit zweizähliger Symmetrie (Abb. 1) kann anhand der MNDO-Resultate weiter spezifiziert werden: Aufgrund seiner günstigen Ladungsverteilung ist das Vierring-Isomere mit C_{2v} -Struktur energetisch bevorzugt. Auch für die nachstehend diskutierten Radikalkationen von Alkyl- und Phenyl-Derivaten wird daher stets von einer 1,2-Dithiet-Struktur ausgegangen.

B. Oxidative Schwefelung von Alkylacetylenen

1,2-Dithiet-Derivate, die durch raumerfüllende Alkylgruppen in 3,4-Stellung "kinetisch stabilisiert" sind (3), lassen sich über mehrstufige Synthesen^{9,10)} in Substanz darstellen. Gegenüber 3,4-Bis(trifluormethyl)-1,2-dithiet mit $IE_1 = 10.2 \text{ eV}^{20}$ sind ihre ersten Ionisierungsenergien auf 7.95 eV²⁰⁾ erniedrigt, und sie können daher mit dem Sauerstoff-freien und selektiven Einelektronentransfer-System AlCl₃/H₂CCl₂, das in H₂CCl₂/0.1 M R₄N[⊕]-Lösung ein Oxidationspotential von +1.6 V aufweist²⁴), in ihre Radikalkationen übergeführt werden¹¹). Wie hier am Beispiel von 3,4-Di-tert-butyl-1,2-dithiet erläutert sei, zeigen ihre ESR-Spektren wegen Fehlens kopplungsfähiger ¹H-Kerne in α - oder β -Positionen zum C₂S₂-Vierring nur ein einziges, nicht weiter aufgelöstes Signal [Schema (9)]. Durch Randlinien-Verstärkung können – aufgrund der geringen Signalbreite der Mittellinie – beide ³³S-Satelliten der Tieffeld-Seite in der natürlichen Häufigkeit von nur 0.76% sichtbar gemacht werden; die ³³S-Kopplungskonstante und der g-Faktor sind den für 3,4-Bis(trifluormethyl)-1,2-dithiet-Radikalkationen beobachteten vergleichbar $(a_{33} = 0.86 \text{ mT}; q = 2.0160^{11})$ und belegen auch hier die weitgehende Lokalisierung des ungepaarten Elektrons in der Disulfid-Brücke [Schema (9)].

Chem. Ber. 119 (1986)

Das 3,4-Di-tert-butyl-1,2-dithiet-Radikalkation (2i) kann auch auf einfacherem Wege durch Umsetzung von Di-tert-butylacetylen (1i) mit Dichlordisulfan und AlCl₃ in H_2CCl_2 erzeugt werden (9). Diese "oxidative Schwefelung" läßt sich auf zahlreiche andere Acetylen-Derivate übertragen [Gleichung (5)].

Die Durchführung der Messungen und die Zuordnung der ESR-Spektren soll am Beispiel von tert-Butylacetylen erläutert werden (Abb. 2).

Abb. 2. ESR-Spektren der Umsetzung von tert-Butylacetylen (1d) mit S₂Cl₂ und AlCl₃ in H₂CCl₂ bei 250 K (A) und nach Erwärmen auf 300 K (B) sowie (C) von 2,5-Di-tert-butyl-1,4-dithiin-Radikalkation (2d) (vgl. Text)

Bei Aufwärmen des bei 190 K abgeschmolzenen ESR-Proberöhrchens mit tert-Butylacetylen, S_2Cl_2 und AlCl₃ in H_2CCl_2 tritt bei 250 K zunächst das Protonen-Dublett des tert-Butyl-1,2-dithiet-Radikalkations (2d) auf (Abb. 2, A). Hundertfache Randlinien-Verstärkung läßt die äußere, ebenfalls zum Dublett aufgespaltene Quartett-Linie von ³³S in natürlicher Häufigkeit von 0.76% erscheinen; im Intensitätsanstieg der Flanke erkennt man das sich anschließende innere ³³S-Tieffeld-Dublett. Längeres Stehenlassen bei Raumtemperatur führt zum Auftreten eines zusätzlichen ESR-Signals (Abb. 2, B), welches aufgrund seines geringeren g-Faktors von 2.0093 sowie des deutlich erkennbaren Tripletts den isomeren 2,5- sowie 2,6-Di-tert-butyl-substituierten 1,4-Dithiin-Radikalkationen (3d, d') zu-

geordnet wird. Die zusätzliche Aufspaltung der Tieffeld- und Hochfeld-Außenlinien in etwa gleich intensive Signale und das nur bei ihrer Addition resultierende Gesamtintensitätsverhältnis 1:2:1 (Abb. 2, B) belegen, daß die beiden Isomeren in etwa gleichem Verhältnis auftreten. Die größere Kopplungskonstante a_{1H} gehört zum zentrosymmetrischen 2,5-Di*tert*-butyl-1,4-dithiin-Radikalkation (**3d**), wie die unabhängige mehrstufige Synthese der Neutralverbindung ausgehend von Pinacolin nach Lit.²³ (vgl. Exp. Teil) und deren Einelektronen-Oxidation mit AlCl₃/H₂CCl₂ sichert (Abb. 2, C). Aus dem ESR-Spektrum läßt sich bei 100facher Randverstärkung, welche die äußeren Tieffeld- und Hochfeld-Linien des ³³S-Quartetts auflöst, zusätzlich die ³³S-Kopplungskonstante in natürlicher Häufigkeit bestimmen: Mit $a_{33S} = 0.97$ mT ist sie der des unsubstituierten 1,4-Dithiin-Radikalkations (**2a**), $a_{33S} = 0.984$ mT¹⁶, vergleichbar. Die für die isomeren 2,5- und 2,6-Di-*tert*-butyl-1,4-dithiin-Radikalkationen getroffene Zuordnung der ESR-Spektren wird durch HMO-Berechnungen ausgehend von Literatur-üblichen Parametern¹⁶ gestützt, welche die in (10) angegebenen π -Spinpopulationen ($c_{4,MO}^{HMO}$ ² an den einzelnen Zentren µ liefern.

Danach sind bei Anordnung der Alkylgruppen in den Positionen 2 und 5 des 1,4-Dithiin-Radikalkations höhere Spinpopulationen zu erwarten.

Im 2,5-Di-tert-butyl-1,4-dithiin-Radikalkation (3d) können die tert-Butyl-Gruppen – vermutlich AlCl₃-katalysiert – wandern [Gl. (11)].

$$H S C(CH_3)_3 ACOS/H_2CCOS H S C(CH_3)_3 H_3COK H S H (11)$$

$$\frac{3d}{3d} 3d'$$

Beim Erwärmen der abgeschmolzenen ESR-Probe auf Raumtemperatur tritt nach wenigen Minuten erneut eine Aufspaltung der äußeren ¹H-Triplett-Linien auf (vgl. Abb. 2, B). Umsetzung von 2,5-Di-*tert*-butyl-1,4-dithiin mit AlCl₃/H₂CCl₂ in präparativem Maßstab (vgl. Exp. Teil) liefert ein Produktgemisch, dessen NMR- und GC-Daten eine Isomerisierung bestätigen. Versuche, die "oxidative Schwefelung" mit S₂Cl₂ und AlCl₃ in H₂CCl₂ am Beispiel von *tert*-Butylacetylen zu einer Darstellungsmethode für schwer zugängliche 1,4-Dithiin-Derivate auszuarbeiten, blieben erfolglos: Nach wäßriger Aufarbeitung der Reaktionslösung unter Zusatz von Dithionit lassen sich die isomeren 2,5- und 2,6-Di-*tert*-butyl-1,4-dithiine zwar gaschromatographisch nachweisen, ihr Anteil am resultierenden Produktgemisch ist jedoch gering (vgl. Exp. Teil). Demgegenüber ist die Umsetzung von Alkylacetylenen mit S₂Cl₂ und AlCl₃ im Oxidationssystem AlCl₃/H₂CCl₂²⁴⁾ geeignet, zahlreiche bislang unbekannte 1,2-Dithiet- sowie 1,4-Dithiin-Radikalkationen zu erzeugen und ESR-spektroskopisch zu charakterisieren. Tab. 1 faßt die ESR-Daten, deren Messung am Beispiel *tert*-Butylacetylen detailliert beschrieben wurde (Abb. 2), für die Grundkörper (R = H), die

Mono- und Dialkyl-Derivate ($R = CH_3$, C_2H_5 , C_3H_7 , C_4H_9 und $C(CH_3)_3$) sowie für die anschließend beschriebenen Phenyl-Verbindungen zusammen.

C. $C \equiv C$ -Schwefelung von Phenylacetylenen

Phenylacetylene bieten der "oxidativen Schwefelung" gemäß (12) zwei Angriffspunkte: den Benzol-Kern zur Bildung Acetylen-substituierter Benzo-1,2-dithiet-[Gl. (1)] oder die C \equiv C-Bindung zur Erzeugung phenylierter 1,2-Dithiet-Radikalkationen (5).

Stabile Endprodukte könnten somit analog zu (1) Thianthren oder aber 1,4-Dithiin-Radikalkationen [Gl. (5)] sein. Wie am Beispiel Ethylphenylacetylen (11) gezeigt wird (Abb. 3), tritt Reaktion ausschließlich an der $\pi_{C=C}$ -Bindung ein.

Die "oxidative Schwefelung" von 11 (Abb. 3) verläuft ähnlich der von tert-Butylacetylen (1d) (Abb. 2): Beim Auftauen des bei 190 K abgeschmolzenen ESR-Röhrchens auf 250 K tritt zunächst das Triplett der Methylen-Protonen der Ethyl-Gruppe auf; bei 100facher Randbereichs-Verstärkung läßt es sich auch im Tieffeld-³³S-Signal auflösen (Abb. 3, 250 K). Nach Erwärmen auf 300 K erscheint – rascher als bei der detailliert beschriebenen Umsetzung von tert-Butylacetylen (Abb. 2) – auf der Hochfeld-Seite das Quintett des zugehörigen 1,4-Dithiin-Radikalkations (21). Aus dem ESR-Spektrum (Abb. 3, B) lassen sich keinerlei Hinweise auf ein Isomeren-Gemisch entnehmen; vermutlich entsteht ausschließlich das 2,5-Diethyl-3,6-diphenyl-1,4-dithiin-Radikalkation (31).

Der Befund, daß die elektrophile "Schwefelung" von Phenylacetylenen bevorzugt an der C \equiv C-Bindung erfolgt, wird durch zahlreiche weitere Ergebnisse bestätigt: Die bei anderen Derivaten beobachteten Signal-Multipletts (Tab. 1) stützen das bevorzugte Entstehen von 3-Phenyl-1,2-dithiet- (2j) und 2,5-Diphenyl-1,4-dithiin-Radikalkationen (3j) ebenso wie die unabhängige und zu übereinstimmenden ESR-Spektren führende Erzeugung aus 1,2-Dibrom-1-phenylethen oder 1,1,2,2-Tetrabrom-1-phenylethan mit Na_2S_2 und AlCl₃ in H_2CCl_2 gemäß (13) [vgl. (6)].

Abb. 3. ESR-Spektren der Umsetzung von Ethylphenylacetylen (11) mit S₂Cl₂ und AlCl₃ in H₂CCl₂ bei 250 K (A) und bei 350 K (B). Zur Zuordnung vgl. Text

Anzumerken ist, daß die Weiterreaktion zu 1,4-Dithiin-Radikalkationen in Reaktionsgemischen (13) wesentlich langsamer erfolgt als bei Umsetzung von Phenylacetylen mit S_2Cl_2 und AlCl₃ in H_2CCl_2 .

D. Diskussion der ESR-Daten und Anmerkung zur oxidativen Schwefelung von Acetylen

Die ESR-Daten der bei Schwefelung verschiedenartig substituierter Acetylene beobachteten 1,2-Dithiet- und 1,4-Dithiin-Radikalkationen sind in Tab. 1 zusammengefaßt.

Bei einem Vergleich der ESR-Daten (Tab. 1) fällt zunächst ins Auge, wie groß die g-Faktoren von 1,2-Dithiet-Radikalkationen (2) relativ zum Wert g = 2.0023 für das freie Elektron und auch zu denen der 1,4-Dithiin-Radikalkationen

(3) sind. Zurückzuführen ist dieser Befund vor allem auf die – gegenüber H- und C-Zentren – vergrößerte Spin/Bahn-Kopplung von S-Kernen²⁶⁾ sowie auf die beträchtlichen s-Spindichten in den Disulfid-Brücken, welche sich auch in den relativ großen ³³S-Kopplungskonstanten zeigen. Die für die R₂C₂S^{\oplus}-Derivate gemessenen g-Faktoren und ³³S-Kopplungskonstanten gehören zu den größten bis-

Tab. 1. g-Faktoren sowie Kopplungskonstanten $a_{\rm H}$ und $a_{^{13}{\rm S}}$ (mT) der durch Umsetzung Alkyl- und Phenyl-substituierter Acetylene (1) mit S₂Cl₂ und AlCl₃ in H₂CCl₂ erzeugten 1,2-Dithiet- (2) und 1,4-Dithiin-Radikalkationen (3)

R ¹ —C≅C—R ²					$ \begin{array}{c} $		
	1 R ¹	R ²	8	2 ≉H	^a 33 _S	g	2 A _H
<u>a</u>	H	н	2.0153	0.275 (2)	0.85	2.0089	0.28(4)
Þ	н	С ₃ Н ₇	2.0157	0.339(1)	a) b)		
Ē	H	с ₄ н ₉	2.0158	0.138 (1)	a) b)		
₫	H	с(сн ₃)3	2.0156	0.321 (1)	0.88	2,0093	0.345(2) ^{C)} 0.302(2)
Ē	СНЗ	СНЗ	2.0148	0.215 (6)	0,76	2.0085	0.216(12)
£	Снз	с ₂ н ₅	2.0152	0.220 (5)	0.80		
ā	снз	с(сн _{з)з}	2.0156	0.193 (3)	0.81		
μ	с ₂ н ₅	C ₂ H ₅	2.0153	0.198 (4)	0.81	2.0098	0.146(8)
į	с(сн ₃) ₃	C(CH3)3	2.0159		0.81	2.0080	
ì	^с 6 ^н 5	н	2.0148	0.306 (1)	0.85	2.0082	0.255(2)
ķ	с ₆ н ₅	сн _з	2.0144	0.187 (3)		2.0079	0.208(6)
ī	с 6 н2	с ₂ н ₅	2.0144	0.178 (2)	0.84	2.0085	0.143(4)
Ē	с ₆ н ₅	с ₆ н ₅	2.0148			2.0082	

^{a)} Ringprotonen. – ^{b)} β-Protonen der Methyl-Gruppe. – ^{c)} Die größere Kopplung wird dem 2,5-Isomeren zugeordnet (vgl. Text).

lang bekannt gewordenen und werden nur von denen kleinerer Radikale oder bei noch stärkerer Spin-Lokalisierung übertroffen, Beispiele hierfür sind in (14) angegeben.

Wegen der überwiegenden Lokalisierung von Spin (14) und Ladung [vgl. (7) und (8)] an den S-Zentren zeigen sich innerhalb der beiden Radikalkation-Reihen keine signifikanten Substituenten-Effekte (Tab. 1); lediglich bei den Phenyl-Derivaten nehmen die g-Faktoren geringfügig ab.

Die ¹H-Kopplungen sinken erwartungsgemäß mit steigender Entfernung von den $C_2S_2^{:\oplus}$ - und $C_4S_2^{:\oplus}$ -Radikalkation-Zentren stark ab: Die größten Beträge finden sich jeweils für die Ringwasserstoffe (Tab. 1); es folgen die H-Kopplungen für H₃C-Substituenten oder für die ringnahen H₂C-Glieder der Alkylketten. H-Kopplungen für (H₃C)₃C-Gruppen werden wegen zu kleiner Kopplungskonstanten $a_H \approx 0.01$ mT nicht mehr aufgelöst, ihre Multipletts verschwinden innerhalb der Linienbreiten. Bei Vergleich der H-Kopplungen von Methyl- und Ethyl-Derivaten, z. B. den persubstituierten **2e/3e** und **2h/3h** (15), fällt auf, daß diese bei den 1,4-Dithiin-Radikalkationen 3 stärker abnehmen, ein Hinweis auf geringere (hyperkonjugative) Spin-Delokalisierung infolge sterischer Überfüllung.

Von besonderem Interesse ist, daß sich aus den H-Kopplungen der 1,2-Dithiet-Radikalkationen 2 (Tab. 1) über die McConnell-Beziehung, $a_{\rm H}^{\rm Ring} = |Q| \cdot Q_{\rm C}^{\pi}$, mit $|Q| = 2.5 \text{ mT}^{29}$ die relativ geringen π -Spinpopulationen $Q_{\rm C}^{\pi}$ an den benachbarten Vierring-Kohlenstoffen abschätzen lassen, s. (16).

H5	R	н	C ₃ H ₇	C₄H₀	C(CH ₃) ₃	C ₆ H ₅	
R ∕ ^C	$a_{\rm H}^{\rm Ring}$ Q^{π}	0.275 0.11	0.339 0.13 ₅	0.338 0.13 ₅	0.321 0.13	0.306 0.12	(16)

Ihre Substituenten-unabhängige Konstanz liefert einen weiteren Beleg für die überwiegende Lokalisierung von Spin (14) wie Ladung [vgl. (7) und (8)] in den Disulfid-Brücken.

Zusammenfassend ist festzuhalten, daß sich durch "oxidative Schwefelung" von Acetylenen (1) mit S_2Cl_2 und AlCl₃ oder mit S_8 und SbCl₅ in Methylenchlorid 1,2-Dithiet- und 1,4-Dithiin-Radikalkationen erzeugen und ESR-spektroskopisch zweifelsfrei identifizieren lassen. Aus Alkyl- wie Phenylacetylenen entstehen in vergleichbar schnellen Startreaktionen die entsprechend substituierten 1,2-Dithiet-Radikalkationen (2). Deren Umwandlung in 1,4-Dithiin-Radikalkationen (3) erfolgt bei den Phenyl-Derivaten wesentlich rascher. Hinzuweisen ist erneut darauf, daß der ESR-Nachweis schr empfindlich ist und bereits Konzentrationen von etwa 10^{-6} mol/Liter zu erkennen erlaubt.

Zur Frage nach dem Mechanismus der einleitend erwähnten Schwefel-katalysierten Friedel/Crafts-Dichlorierung von Benzol (1) tragen die hier beschriebenen Untersuchungen lediglich einen vereinfachenden Teilaspekt bei: Phenylacetylenen stehen zum 1,2-Dithiet-Ringschluß drei Möglichkeiten [(17); vgl. auch (12)] offen.

$$\rightarrow \bigcirc_{\substack{C \\ C \\ C \\ R}} \xrightarrow{S_{2Cl_{2}}} (\bigcirc_{R} \xrightarrow{S})$$
(17)

Von diesen ist die "Addition" an die C≡C-Dreifachbindung bevorzugt gegenüber der Benzolring-"Substitution" (1), welche eine zusätzliche H-Abstraktion erfordert. Um im Reaktionsgemisch von Acetylen, S2Cl2, AlCl3 und H2CCl2 gemäß (6) ein Radikalkation $H_2C_2S_2^{\bullet}$ (2a) mit 21 Valenzelektronen zu erzeugen, ist formal an HC≡CH ein Bruchstück S;[⊕] mit 11 Valenzelektronen anzulagern. Abstraktion von zwei Chlorid-Ionen aus S₂Cl₂ durch Lewis-Säuren wie AlCl₃ würde aber zum Dikation $S_2^{2\oplus}$ mit nur 10 Valenzelektronen führen, und das komplexe Redox-System müßte dann einen reduktiven Elektronentransfer ermöglichen. Umgekehrt ist bei der Darstellung aus Dibromethan und $S_2^{2\Theta}$ eine zusätzliche Oxidationsreaktion z. B. durch AlCl₃/H₂CCl₂²⁴ erforderlich. Auf beiden Erzeugungswegen sind neutrale 1,2-Dithiet-Derivate vermutlich keine Zwischenprodukte: H₂C₂S₂ weist mit 9.05 eV eine zu hohe erste Ionisierungsenergie auf, um von AlCl₃/H₂CCl₂ noch oxidiert werden zu können²⁴⁾. Gegenüber der selektiven Bildung von R₂C₂S² - Vierring-Radikalkationen (2) in den komplexen Reaktionsgemischen, deren weitere Klärung mit ³³S-markierten Ausgangsverbindungen angestrebt wird, erfordert ihre Ringerweiterung mit einem Überschuß von RC≡CR zu 1,4-Dithiin-Radikalkationen $R_4C_4S_2^{\oplus}$ (3) formal keine zusätzliche Redox-Reaktion.

Die vorstehenden Untersuchungen wurden vom Land Hessen, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt. P. R. dankt der Hermann-Schlosser-Stiftung für ein Stipendium. Frau C. Rösner half bei der Darstellung der Ausgangsverbindungen. Herrn Prof. J. Vo β (Universität Hamburg) danken wir für eine Vergleichsprobe von 3,4-Di-tert-butyl-1,2-dithiet.

Experimenteller Teil

Gaschromatographie: Hewlett-Packard 5540 A mit Säule OV 17 (Träger WHP 100/120; stationäre Phase 50% Methyl- und 50% Phenylsilicon). - ¹H-NMR: Varian T 60, CDCl₃-Lösungen mit TMS als internen Standard.

3.4-Bis(trifluormethyl)-1,2-dithiet wird aus Hexafluor-2-butin und Schwefel bei 445 °C dargestellt⁶; als Nebenprodukt läßt sich CS₂ PE-spektroskopisch³ nachweisen. Die Verbindung, charakterisiert durch Sdp. 99 °C/760 Torr, Molekülpeak m/z = 223 sowie IR-Banden⁶, dimerisiert nach mehreren Tagen.

3,4-Di-tert-butyl-1,2-dithiet wird aus Pivaloin in mehrstufiger Synthese¹⁰ erhalten und seine Reinheit durch ¹H-NMR, MS und UV¹⁰ gesichert.

trans-1,2-Dichlorethan, 1,1,2,2-Tetrabromethan, 1-Pentin, 1-Hexin, 1-Butin, 2-Pentin, Phenylacetylen (1j) und Tolan (1m) (EGA-Chemie) werden durch Destillation oder Umkristallisation nachgereinigt.

tert-Butylacetylen (3,3-Dimethyl-1-butin, 1d) läßt sich vorteilhaft aus Pinacolin-dichlorid mit Kalium-tert-butylat³⁰ in 90proz. Ausb. gewinnen. Nach Destillation (Sdp. $37 - 38 \degree C/$ 760 Torr) wird gaschromatographisch eine Reinheit von 97% sichergestellt. – ¹H-NMR (CDCl₃): $\delta = 2.14$ (s, 1 H); 1,2 (s, 9 H).

Di-tert-butylacetylen (2,2,5,5-Tetramethyl-3-hexin, 1i), synthetisiert in drei Stufen ausgehend von $1d^{31}$, wird wiederholt i. Vak. destilliert (Sdp. 110-115 °C/130 Torr) und die Mittelfraktion zusätzlich durch präparative Gaschromatographie gereinigt. – ¹H-NMR (CDCl₃): $\delta = 1.2$ (s, 18H).

tert-Butylmethylacetylen (4,4-Dimethyl-2-pentin 1g), hergestellt durch Umsetzung von 1d mit NaNH₂ und Dimethylsulfat ³², kann durch Rektifikation über eine Drehbandkolonne (Sdp. 81-82 °C/760 Torr) mit \geq 98% Reinheit erhalten werden. – ^tH-NMR (CDCl₃): δ = 1.77 (s, 3H); 1.2 (s, 9H).

Methylphenylacetylen (1-Propinylbenzol, 1k) wird aus Phenylacetylen (1j) mit Butyllithium nach anschließender Alkylierung mit Methyliodid³³⁾ gewonnen (Sdp. 182–184°C/720 Torr). – ¹H-NMR (CDCl₃): $\delta = 6.6$ (m, 5H); 1.4 (s, 3H).

Ethylphenylacetylen (1-Butinylbenzol, 1): Hier bewährt sich zur Alkylierung von 1j die Umsetzung der Grignardverbindung mit Diethylsulfat³⁴; Sdp. 197–200°C/760 Torr. – ¹H-NMR (CDCl₃): $\delta = 6.4-6.9$ (m, 5 H); 1.7 (q, 2 H); 0.5 (t, 3 H).

1,2-Dibrom-1-phenylethen und 1,1,2,2-Tetrabrom-1-phenylethan werden durch Br_2 -Addition an Lj nach Lit.³⁵⁾ erhalten.

2,5-Di-tert-butyl-1,4-dithiin wird ausgehend von Pinacolin synthetisiert, jedoch beträgt die Lit.-Ausb.²⁵⁾ der letzten Stufe, einer mehrstündigen dehydratisierenden Dimerisierung von tert-Butyl(mercaptomethyl)keton mit gasförmigem HCl in Ether, nur 3.5%. Umsetzung in konz. H₂SO₄ steigert sie auf über 50% und senkt die Reaktionsdauer erheblich: 3.3 g tert-Butyl(mercaptomethyl)keton werden in 20 ml konz. H₂SO₄ 15 min bei Raumtemp. gerührt. Die Aufarbeitung erfolgt durch Zugabe von konz. NaOH über den Neutralpunkt hinaus. Nach Ausethern, Trocknen der etherischen Phase und Abziehen des Ethers kristallisiert das Produkt aus. Umkristallisieren aus Ethanol liefert lange farblose Nadeln; Ausb. 1.6 g (56%), Schmp. 80-81°C (Lit.³⁶⁾ 80°C). - ¹H-NMR (CDCl₃): $\delta = 6.1$ (s, 2H), 1.2 (s, 18H).

 $Na_2^{33}S_2$: Zur Darstellung im Mikromaßstab⁴⁾ werden 1.2 mg Na in einem 2-ml-Kolben unter Argon abgewogen und anschließend bei -60 °C etwa 1 ml NH₃ aufkondensiert. Bei

Zugabe von 5 mg S₈ (Gehalt 48.56% ³³S) entfärbt sich die blaue Lösung. Nach Abziehen von überschüssigem NH₃ hinterbleibt ein gelblicher Rückstand. Angesichts der geringen Mengen wurde auf Extraktion von überschüssigem S₈ mit CS₂ verzichtet.

Erzeugung der Radikal-Kationen: In einem 3-mm-Glasröhrchen werden etwa 5 mg AlCl₃ vorgelegt. Nach Evakuieren im Hochvak. werden etwa 2 ml H₂CCl₂ aufkondensiert und im Proberöhrchen mit fl. N₂ eingefroren. Unter N₂ fügt man die zu oxidierende Substanz oder S₂Cl₂ und das gewünschte Acetylen zu. Nach Abschmelzen des Proberöhrchens wird im Temperatur-kontrollierten Probenraum des ESR-Spektrometers langsam bis zum Erscheinen der ESR-Signale aufgetaut. S₈/SbCl₅- oder Na₂S₂/AlCl₃-haltige Proben werden in gleicher Weise bereitet. Zur Umlagerung in die beschriebenen 1,4-Dithiin-Radikalkationen (3) wird die Probe kurz auf Raumtemp. erwärmt.

ESR: Varian E 9 mit Tieftemperaturzubehör E 257. Die Eichung der Spektren erfolgte mit Perylen-Radikalanion ($a_{\rm H} = 0.375$, 0.311 mT; $g = 2.002671^{36}$) unter Verwendung eines Doppel-Probenraums. Die Computersimulation der ESR-Spektren wurde mit Hilfe des Programms ESPLOT³⁷) durchgeführt.

Isomerisierung von 2,5-Di-tert-butyl-1,4-dithiin: 2.28 g (10 mmol) des Dithiins und 10 mmol AlCl₃ werden in 50 ml trockenem H₂CCl₂ bei Raumtemp. über Nacht gerührt. Die organische Phase wird mit wäßriger Natriumdithionit-Lösung ausgeschüttelt, mit Na₂SO₄ getrocknet und das Methylenchlorid abgezogen. Im ¹H-NMR-Spektrum des hinterbleibenden Öls tritt im Bereich der Ringprotonen außer dem Signal der Ausgangsverbindung bei $\delta = 6.08$ (s) ein weiteres Signal bei 6.18 ppm (s) auf, das 2,6-Di-tert-butyl-1,4-dithiin³⁸⁾ zuzuordnen ist. Im Gaschromatogramm erscheint nach längerer Retentionszeit ein zweiter Peak; aus den Flächen läßt sich ein Isomerengemisch von 3.6:1 abschätzen, d. h. 27% der Ausgangsverbindung sind unter den Reaktionsbedingungen in das 2,6-Isomere umgelagert worden.

Präparative Umsetzung von tert-Butylacetylen (1d) mit $S_2Cl_2/AlCl_3$ in H_2CCl_2 : 4.45 ml (36 mmol) 1d werden langsam in eine Lösung von 0.96 ml (12 mmol) S_2Cl_2 und 3.0 g (23 mmol) AlCl_3 in trockenem H_2CCl_2 getropft, dabei tritt unter Erwärmung Dunkelfärbung ein. Nach Ausschütteln mit wäßriger Natriumdithionit-Lösung wird das H_2CCl_2 i. Vak. abgezogen. Das Gaschromatogramm des hinterbleibenden dunklen Öls (Säule OV 17, Temp. 170°C isotherm) belegt, daß das entstandene Reaktionsgemisch etwa 20% der isomeren 2,5-und 2,6-Di-tert-butyl-1,4-dithiine enthält. Zum ¹H-NMR-spektroskopischen Nachweis können sie durch präparative Säulenchromatographie (Kieselgel; n-Hexan/H₂CCl₂ 10:1) abgetrennt werden. – ¹H-NMR (CDCl₃): $\delta = 6.18$ (s), 6.08 (s), 1.2 (2 s).

MNDO-Berechnungen wurden mit dem Programm von Dewar und Thiel³⁹⁾ am Computer VAX 11/750 des Arbeitskreises durchgeführt.

CAS-Registry-Nummern

1a: 74-86-2 / 1b: 627-19-0 / 1c: 693-02-7 / 1d: 917-92-0 / 1e: 503-17-3 / 1f: 627-21-4 / 1g: 999-78-0 / 1h: 928-49-4 / 1i: 17530-24-4 / 1j: 536-74-3 / 1k: 673-32-5 / 1l: 622-76-4 / 1m: 501-65-5 / 2a: 38921-72-1 / 2b: 103835-09-2 / 2c: 103835-10-5 / 2d: 38908-95-1 / 2e: 38921-73-2 / 2f: 103835-11-6 / 2g: 103835-12-7 / 2h: 103835-13-8 / 2i: 90739-78-9 / 2j: 38908-96-2 / 2k: 103835-14-9 / 2l: 103835-15-0 / 2m: 103835-16-1 / 3a: 34479-92-0 / 3d: 103835-17-2 / 3e: 34479-93-1 / 3h: 103835-18-3 / 3i: 103835-19-4 / 3j: 42172-21-4 / 3k: 103835-10-7 / 3l: 103835-21-8 / 3m: 34479-94-2 / S₂Cl₂: 10025-67-9 / Na₂³³S₂: 103835-23-0 / F₃CC = CCF₃: 692-50-2 / PhC = CMgBr: 6738-06-3 / Ph(Br)C = CHBr: 6607-46-1 / PhCBr₂CHBr₂: 31253-21-1 / (CH₃)₃CCIO)CH(SH)C(CH₃)₃: 103835-22-9 / Schwefel: 7704-34-9 / Pivaloin: 815-66-7 / Pinacolin-dichlorid: 22591-21-5 / 3,4-Bis(trifluormethyl)-1,2-di-

- thiet: 360-91-8 / 3,4-Di-tert-butyl-1,2-dithiet: 84449-09-2 / 2,5-Di-tert-butyl-1,4-dithiin: 52743-66-5 / 2,6-Di-tert-butyl-1,4-dithiin: 51678-62-7
- ¹⁾ 70. Mitteilung: H. Bock, U. Lechner-Knoblauch und P. Hänel, Chem. Ber. 119, 3749 (1986), vorstehend.
- ²⁾ Vgl. H. Bock, U. Stein und P. Rittmeyer, Angew. Chem. 94, 540 (1982); Angew. Chem., Int. Ed. Engl. 21, 533 (1982), und dort zitierte Literatur.
- ³⁾ Teil der Dissertation P. Rittmeyer, Univ. Frankfurt 1986.
- ⁴⁾ Unveröffentlichte Ergebnisse aus der Dissertation U. Stein, Univ. Frankfurt 1980.
- ⁵⁾ Das Oxidationspotential von AlCl₃/H₂CCl₂-Lösungen beträgt +1.6 V, H. Bock und U. Lechner-Knoblauch, J. Organomet. Chem. 294, 295 (1985), und dort zitierte Literatur.
- ⁶⁾ C. G. Krespan, J. Am. Chem. Soc. 83, 3434 (1961); vgl. auch C. G. Krespan, B. C. McKusick und T. L. Cairns, ebenda 82, 1515 (1960), sowie 83, 3438 (1961), und dort zitierte Literatur.
- ⁷⁾ J. L. Hencher, Q. Shen und D. G. Tuck, J. Am. Chem. Soc. 98, 899 (1976).
- ⁸⁾ G. A. Russel, R. Tanikaga und E. R. Talaty, J. Am. Chem. Soc. 94, 6125 (1972).
- 9) A. Krebs, H. Colberg, U. Höpfner, H. Kimling und J. Odenthal, Heterocycles 12, 1153 (1979).
- ¹⁰ B. Köpke und J. Voβ, J. Chem. Res. Synop. 11, 314 (1982).
- 11) H. Bock, P. Rittmeyer, A. Krebs, K. Schütz, J. Voß und B. Köppke, Phosphorus Sulfur 19, 131 (1984), und dort zitierte Literatur.
- ¹²⁾ J. Giordan und H. Bock, Chem. Ber. 115, 2548 (1982).
- ¹³⁾ H. Bock und B. Roth, Phosphorus Sulfur 14, 211 (1983).

- ¹⁶⁷ H. Bock und B. Roln, Priosphorus Sundi 14, 211 (1985).
 ¹⁶⁴ G. N. Schrautzer und H. N. Rabinowitz, J. Am. Chem. Soc. 92, 5975 (1970).
 ¹⁵ Vgl. z. B. E. A. Lucken, Theoret. Chim. Acta 1, 397 (1963).
 ¹⁶ Vgl. z. B. P. D. Sullivan, J. Am. Chem. Soc. 90, 3618 (1968).
 ¹⁷ R. B. Boar, D. W. Hawkins, J. F. McGhie, S. C. Misra, D. H. R. Barton, M. F. C. Ladd und D. C. Popey, J. Chem. Soc., Chem. Commun. 1975, 756.
 ¹⁸ V. G. (Limphurg). mändliche Mittellung.
- ¹⁸ J. Kopf (Universität Hamburg), mündliche Mitteilung. Für 4,5,6,7-Tetrahydro-3,3,7,7-tetramethyl-3H-1,2-dithieto[3,4-d]thiepin wurde eine SS-Bindungslänge von 207.9 pm bestimmt.
- ¹⁹⁾ G. Calzaferri und R. Gleiter, J. Chem. Soc., Perkin Trans. 2 1975, 559.
- ²⁰⁾ W. Jian-qi, M. Mohraz, E. Heilbronner, A. Krebs, K. Schütz, J. Voss und B. Köpke, Helv. Chim. Acta 66, 801 (1983).
- ²¹ R. Schulz, A. Schweig, K. Hartke und J. Köster, J. Am. Chem. Soc. 105, 4519 (1983).
 ²² J. Fabian, R. Mayer, P. Carsky und R. Zahradnik, Z. Chem. 25, 50 (1985).
- ²³⁾ Vgl. z. B. W. Kusters und P. de Mayo, J. Am. Chem. Soc. 95, 2383 (1975); sowie 96, 3502 (1976) oder K. Hartke, F. Kissel, J. Quante und R. Matusch, Chem. Ber. 113, 1898 (1980), und dort zitierte Literatur.
- ²⁴⁾ H. Bock und U. Lechner-Knoblauch, J. Organomet. Chem. 294, 295 (1985).
- ²⁵⁾ F. Asinger, M. Thiel, G. Peschel und K. H. Meinicke, Liebigs Ann. Chem. 619, 145 (1958).
- ²⁶⁾ Vgl. z. B. H. Bock, G. Brähler, D. Dauplaise und J. Meinwald, Chem. Ber. 114, 2622 (1981), und dort zitierte Literatur.
- ²⁷⁾ H. Bock und U. Stein, Chem. Ber. 113, 3208 (1980).
- ²⁸⁾ G. A. Russell und M. Zaleta, J. Am. Chem. Soc. 104, 2318 (1982).
- ²⁹⁾ Vgl. z. B. E. Heilbronner und H. Bock, Das HMO-Modell und seine Anwendung, Bd. I, 2. Aufl., S. 267f., Verlag Chemie, Weinheim 1978.
- ³⁰⁾ P. J. Kocienski, J. Org. Chem. 39, 3285 (1974).
- ³¹⁾ G. F. Hennion und T. F. Banigan, J. Am. Chem. Soc. 68, 1208 (1946).
- ³²⁾ H. De Graf, Bull. Soc. Chim. Belg. 34, 427 (1925).
- ³³⁾ Vgl. z. B. H. G. Viehe, Chemistry of Acetylenes, Marcel Dekker, New York 1969.
- ³⁴⁾ H. Gilmann und R. E. Hoyle, J. Am. Chem. Soc. 44, 2621 (1922).
- ³⁵⁾ Methoden der Organischen Chemie (Houben-Weyl), Bd. V/4, S. 97, Thieme, Stuttgart 1960.
- ³⁶⁾ H. Scheffler und H. B. Stegmann, Elektronenspinresonanz, Springer-Verlag, Berlin 1970.
- ³⁷⁾ Bezüglich Details vgl. Dissertation W. Kaim, Univ. Frankfurt 1977.
- ³⁸⁾ N. Jacobson, P. de Mayo und A. C. Weedon, Nouv. J. Chimie 4, 331 (1978).
- ³⁹⁾ M. J. S. Dewar und W. Thiel, J. Am. Chem. Soc. 99, 4907 (1977).

[155/85]